Protein kinase D2mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-κB

Abstract
The signaling pathways mediating lysophosphatidic acid (LPA)-stimulated PKD2 activation and the potential contribution of PKD2 in regulating LPA-induced interleukin 8 (IL-8) secretion in nontransformed, human colonic epithelial NCM460 cells were examined. Treatment of serum-deprived NCM460 cells with LPA led to a rapid and striking activation of PKD2, as measured by in vitro kinase assay and phosphorylation at the activation loop (Ser706/710) and autophosphorylation site (Ser876). PKD2 activation induced by LPA was abrogated by preincubation with selective PKC inhibitors GF-I and Ro-31-8220 in a dose-dependent manner. These inhibitors did not have any direct inhibitory effect on PKD2 activity. LPA induced a striking increase in IL-8 production and stimulated NF-κB activation, as measured by NF-κB-DNA binding, NF-κB-driven luciferase reporter activity, and IκBα phosphorylation. PKD2 gene silencing utilizing small interfering RNAs targeting distinct PKD2 sequences dramatically reduced LPA-stimulated NF-κB promoter activity and IL-8 production. PKD2 activation is a novel early event in the biological action of LPA and mediates LPA-stimulated IL-8 secretion in NCM460 cells through a NF-κB-dependent pathway. Our results demonstrate, for the first time, the involvement of a member of the PKD family in the production of IL-8, a potent proinflammatory chemokine, by epithelial cells.