apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain
Top Cited Papers
- 1 December 2008
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 118 (12), 4002-4013
- https://doi.org/10.1172/jci36663
Abstract
Neurotoxic amyloid β peptide (Aβ) accumulates in the brains of individuals with Alzheimer disease (AD). The APOE4 allele is a major risk factor for sporadic AD and has been associated with increased brain parenchymal and vascular amyloid burden. How apoE isoforms influence Aβ accumulation in the brain has, however, remained unclear. Here, we have shown that apoE disrupts Aβ clearance across the mouse blood-brain barrier (BBB) in an isoform-specific manner (specifically, apoE4 had a greater disruptive effect than either apoE3 or apoE2). Aβ binding to apoE4 redirected the rapid clearance of free Aβ40/42 from the LDL receptor–related protein 1 (LRP1) to the VLDL receptor (VLDLR), which internalized apoE4 and Aβ-apoE4 complexes at the BBB more slowly than LRP1. In contrast, apoE2 and apoE3 as well as Aβ-apoE2 and Aβ-apoE3 complexes were cleared at the BBB via both VLDLR and LRP1 at a substantially faster rate than Aβ-apoE4 complexes. Astrocyte-secreted lipo-apoE2, lipo-apoE3, and lipo-apoE4 as well as their complexes with Aβ were cleared at the BBB by mechanisms similar to those of their respective lipid-poor isoforms but at 2- to 3-fold slower rates. Thus, apoE isoforms differentially regulate Aβ clearance from the brain, and this might contribute to the effects of APOE genotype on the disease process in both individuals with AD and animal models of AD.Keywords
This publication has 70 references indexed in Scilit:
- New Therapeutic Targets in the Neurovascular Pathway in Alzheimer's DiseaseNeurotherapeutics, 2008
- ApoE Promotes the Proteolytic Degradation of AβNeuron, 2008
- Human Apolipoprotein E Redistributes Fibrillar Amyloid Deposition in Tg-SwDI MiceJournal of Neuroscience, 2008
- LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-β peptide in a blood–brain barrier in vitro modelNeurobiology of Disease, 2008
- Clearance of amyloid-β by circulating lipoprotein receptorsNature Medicine, 2007
- Transport Pathways for Clearance of Human Alzheimer's Amyloid β-Peptide and Apolipoproteins E and J in the Mouse Central Nervous SystemJournal of Cerebral Blood Flow & Metabolism, 2007
- Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer's diseaseProceedings of the National Academy of Sciences, 2006
- Amino-terminal Domain Stability Mediates Apolipoprotein E Aggregation into Neurotoxic FibrilsJournal of Molecular Biology, 2006
- Molecular mechanisms of lipoprotein receptor signallingCellular and Molecular Life Sciences, 2005
- Tau Suppression in a Neurodegenerative Mouse Model Improves Memory FunctionScience, 2005