Signal transduction by the CD2 antigen in T cells and natural killer cells: requirement for expression of a functional T cell receptor or binding of antibody Fc to the Fc receptor, Fc gamma RIIIA (CD16).

Abstract
Crosslinking of CD2 antigen on T lymphocytes and natural killer (NK) cells leads to a rise in cytoplasmic-free Ca2+ concentration ([Ca2+]i). However, CD2 seems unlikely to interact directly with the second messenger pathways since signaling via CD2 is poor in T cells that lack the T cell receptor (TCR) and is absent in L cells or insect cells that express CD2. In contrast, NK cells that are also TCR- can be triggered via CD2, but it is unclear as to whether the CD16 Fc receptor (FcR) may facilitate this effect. The CD16 transmembrane molecule is expressed in a complex with the zeta homodimer or the zeta/gamma heterodimer and these dimers are also associated with the TCR complex. Thus, it seemed that zeta chains may provide the link between signaling on NK cells and T cells. This could be tested on TCR- cells since when CD16 is transfected into T cells it is expressed in a complex with TCR zeta homodimer or the zeta/gamma heterodimer. At first, potentiation of CD2 signaling was seen on TCR- Jurkat cells expressing CD16, but this was found to be dependent on trace levels (1%) of IgG in F(ab')2 antibody preparations. With pure F(ab')2, the effect was lost. Signaling on a rat NK cell line was also re-examined with F(ab')2 antibodies that had no IgG contamination, and again no signal transduction via CD2 was seen. We thus conclude that there is no clear evidence for potent signaling via CD2 on cells that lack a TCR complex and that TCR zeta chain expressed at the cell surface is not sufficient to potentiate signaling via CD2 as measured by an increase in [Ca2+]i.