Structural and functional similarities between the promoters for mouse tenascin and chicken cytotactin.

Abstract
Cytotactin/tenascin is an extracellular matrix glycoprotein expressed in a restricted anteroposterior pattern during vertebrate development and is reexpressed in the adult during wound healing, tumorigenesis, and nerve regeneration. Previously, we have characterized the chicken cytotactin promoter and have shown its regulation by homeobox gene products in vitro. We have now isolated the promoter for the mouse tenascin gene in order to determine whether common or different DNA regulatory elements control the expression of this gene in these two species. Like the chicken cytotactin gene, the mouse tenascin gene has a single RNA start site that lies 27 bp downstream of a TATA box. A 4028-bp region of DNA upstream of the mouse tenascin gene was sequenced and examined for regulatory motifs in common with the upstream sequence from the chicken cytotactin promoter. Two hundred thirty base pairs of the proximal promoter regions from both genes had an extended sequence similarity and contained common regulatory motifs such as two tracts of homopolymeric dA.dT sequence, an octamer motif, an ATTA (TAAT) motif which is a common core sequence for binding of homeodomain transcription factors, and a TATA-box/cap-site region. Reporter gene constructs with various 5' deletions of the mouse tenascin upstream sequence were tested in transient transfections of mouse NIH 3T3 and chicken embryo fibroblasts. The conserved proximal promoter region of tenascin was responsible for most of the positive regulatory activity. In addition, an upstream region (-2478 to -247) repressed proximal promoter activity in mouse fibroblasts and also in chicken embryo fibroblasts. These data indicate that both the structure and function of the cytotactin/tenascin proximal promoters have remained conserved over 250 million years.