Binding of stromal derived factor‐1α(SDF‐1α) to CXCR4 chemokine receptorin normal human megakaryoblasts butnot in platelets induces phosphorylationof mitogen‐activated protein kinase p42/44 (MAPK), ELK‐1 transcription factor and serine/threonine kinase AKT

Abstract
The aim of this study was to identify pathways which are involved in signal transduction from the CXCR4 receptor stimulated by stromal derived factor-1α (SDF-1α) in human malignant hematopoietic cells and normal megakaryoblasts. First, we found that activation of CXCR4 in human T cell lines (Jurkat and ATL-2) rapidly induced phosphorylation of mitogen-activated protein kinases (MAPK) (p44 ERK-1 and p42 ERK-2). Next, we became interested in CXCR4-mediated signaling in normal hematopoietic cells, and employed human megakaryoblasts, which highly express CXCR4 as a model. We found that stimulation of these cells with SDF-1α led to the phosphorylation of MAPK and serine/threonine kinase AKT as well. Activation of MAPK further led to the phosphorylation of the nuclear transcription factor ELK-1. Phosphorylation of ELK-1 in megakaryoblasts implies that phosphorylated MAPK translocate from cytoplasm into the nucleus where they may phosphorylate some nuclear proteins. Note that neither MAPK nor AKT was phosphorylated in normal human platelets after stimulation by SDF-1. We conclude that both MAPK and AKT are involved in signal transduction pathways from the CXCR4 receptor in malignant and normal human hematopoietic cells. The biological consequences of MAPK, ELK-1 and AKT phosphorylation in megakaryoblasts after stimulation with SDF-1α require further studies.