Temperature-dependent lateral and transverse distribution of the epidermal growth factor receptor in A431 plasma membranes

Abstract
To elucidate further the structure and molecular dynamics of the epidermal growth factor receptor, temperature-dependent aggregation and extracellular protrusion of the epidermal growth factor receptor in isolated plasma membranes from A431 cells were examined by fluorescence energy-transfer techniques. Epidermal growth factor was labeled at the amino terminus with either fluorescein isothiocyanate or tetramethylrhodamine isothiocyanate. A radionuclide receptor displacement assay demonstrated the bioactivity of these derivatives. Aggregation of the epidermal growth factor receptor was measured by determining the increase in fluorescence energy transfer between receptorbound fluorescein and tetramethylrhodamine-labeled epidermal growth factor. Energy transfer between receptor-bound fluorescent derivatives was reversibly greater at 37 than 4°C, indicating temperature-dependent aggregation of the receptor. The extracellular protrusion of the epidermal growth factor receptor was calculated from the magnitude of energy transfer between receptorbound fluorescein labeled epidermal growth factor and 5-(N-dodecanoylamino)-eosin partitioned into the lipid membrane at 4 and 37°C. No significant change in the distance of closest approach between the N-terminus of epidermal growth factor and the plasma membrane was observed at 4°C (69±2 Å) and 37°C (67±2 Å). Thus, the extracellular protrusion of the occupied epidermal growth factor receptor did not change detectably upon receptor aggregation.