Investigation of the solution structure of the human parathyroid hormone fragment (1-34) by proton NMR spectroscopy, distance geometry, and molecular dynamics calculations

Abstract
The structure of human parathyroid hormone fragment (1-34) in a solvent mixture of water and trifluoroethanol has been determined by 1H nuclear magnetic resonance spectroscopy and a combination of distance geometry and molecular dynamic simulations. After complete assignment of the 1H signals, the nuclear Overhauser enhancement data imply the existence of two alpha-helices, comprising residues 3-9 and 17-28, joined by a nonstructured region. The absence of any long-range NOEs and the relative magnitudes of the sequential NOEs and the 3J(HNH alpha) values reflect an inherent flexibility within the entire fragment. The final structures refined by molecular dynamics further support the above results and allow discussion of structural-activity relationships.