Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level

Abstract
A number of empirical studies of traffic measurements from a variety of working packet networks have demonstrated that actual network traffic is self-similar or long-range dependent in nature-in sharp contrast to commonly made traffic modeling assumptions. We provide a plausible physical explanation for the occurrence of self-similarity in local-area network (LAN) traffic. Our explanation is based on convergence results for processes that exhibit high variability and is supported by detailed statistical analyzes of real-time traffic measurements from Ethernet LANs at the level of individual sources. This paper is an extended version of Willinger et al. (1995). We develop here the mathematical results concerning the superposition of strictly alternating ON/OFF sources. Our key mathematical result states that the superposition of many ON/OFF sources (also known as packet-trains) with strictly alternating ON- and OFF-periods and whose ON-periods or OFF-periods exhibit the Noah effect produces aggregate network traffic that exhibits the Joseph effect. There is, moreover, a simple relation between the parameters describing the intensities of the Noah effect (high variability) and the Joseph effect (self-similarity). An extensive statistical analysis of high time-resolution Ethernet LAN traffic traces confirms that the data at the level of individual sources or source-destination pairs are consistent with the Noah effect. We also discuss implications of this simple physical explanation for the presence of self-similar traffic patterns in modern high-speed network traffic.

This publication has 30 references indexed in Scilit: