Accuracy of Global Positioning System for Determining Driver Performance Parameters

Abstract
Global Positioning System (GPS) technology can continuously monitor the time and location of vehicle usage. By recording and analyzing detailed vehicle activity data, researchers can analyze the safety and environmental implications of driver behavior and trip-making patterns. In 2000, NHTSA awarded the Georgia Institute of Technology a contract to equip 1,100 vehicles with a GPS-enhanced device to collect speed and location data. The objective was to acquire more accurate information on the role of excessive speed on crash frequency and severity. GPS technology allows the researcher to continuously measure driver speed, acceleration, and location. When merged with roadway characteristics within a geographic information system (GIS) environment, determinations of driver risk-taking behavior can be made. Second, continuous logging of GPS data allows researchers to capture high-resolution vehicle activity immediately before a crash event, reducing the potential error and bias introduced during determination of precrash speed estimates. Until May 1, 2000, the military degraded the position accuracy of GPS signals for commercial use, known as selective availability. For researchers, life without selective availability is a great improvement. Travel routes can clearly be discerned without the addition of differential correction units. The accuracy of speed, acceleration, and position data obtained from GPS signals for use in determining driver performance parameters without selective availability were tested. The test included four GPS packages, both corrected and uncorrected, simultaneously validated against a distance-measuring instrument. Equipment configuration, data collection methods, and sources of error are reported. The results suggested that non-corrected data can be used to obtain data within a reasonable range of the application requirements. Even without selective availability, GPS accuracy is still problematic in urban canyons and under heavy tree canopies. Although filtering for urban canyon outliers is labor intensive in a continuous monitoring situation, improvements in GIS hold promise for automation of this task.

This publication has 1 reference indexed in Scilit: