Robust discrete-time minimum-variance filtering

Abstract
The bounded-variance filtered estimation of the state of an uncertain, linear, discrete-time system, with an unknown norm-bounded parameter matrix, is considered. An upper bound on the variance of the estimation error is found for all admissible systems, and estimators are derived that minimize the latter bound. We treat the finite-horizon, time-varying case and the infinite-time case, where the nominal system model is time invariant. In the special stationary case, where it is known that the uncertain system is time invariant, we provide a robust filter for all uncertainties that still keep the system asymptotically stable.

This publication has 9 references indexed in Scilit: