Action potential alternans and irregular dynamics in quinidine-intoxicated ventricular muscle cells. Implications for ventricular proarrhythmia.
- 1 May 1993
- journal article
- abstracts
- Published by Wolters Kluwer Health in Circulation
- Vol. 87 (5), 1661-1672
- https://doi.org/10.1161/01.cir.87.5.1661
Abstract
BACKGROUND Cardiac cells display rate-dependent beat-to-beat variations in action-potential duration (APD), action potential amplitude (APA), and excitability during periodic stimulation. We hypothesized that quinidine causes a marked increase in the variability of APD, APA, and excitability of ventricular cells isolated from quinidine-toxic, arrhythmic ventricles. METHODS AND RESULTS Action potentials were recorded from right ventricular endocardial tissues (2 x 1 cm, < 2 mm thick) isolated from dogs in which ventricular tachycardia and ventricular fibrillation (VT/VF) were induced with intravenous quinidine (80-100 mg/kg) over a 5-hour period in vivo (n = 7). As the basic cycle length (BCL) of stimulation was progressively shortened, rate-dependent variations in APD and APA occurred. The initial dynamic change was alternans of APD and APA that could be either in or out of phase between two cells. The magnitude of alternans was a function of the BCL and the strength of the stimulation current. At critically short BCLs, irregular APD and APA behavior emerged in the quinidine-intoxicated cells. In control cells (n = 16) isolated from three nontreated dogs, APD and APA remained constant at all BCLs tested (2,000-300 msec). Quinidine increased the slope of the APD restitution curve compared with control. The observed quinidine APD restitution curve was fitted with a biexponential equation, and computer simulation using the fitted restitution curve reproduced the aperiodic APD seen in the quinidine toxic cells during periodic stimulation. Thus, the observed irregular APD behavior was predictable from the restitution curve. CONCLUSIONS Quinidine toxicity increases the temporal and spatial variability of APD and APA in the ventricle that may promote the initiation of reentrant VT/VF in vivo. The slope of the APD restitution curve provides a method to quantitate inhomogeneities in repolarization time and could be a useful marker for proarrhythmia.Keywords
This publication has 23 references indexed in Scilit:
- Quantitative indices of dispersion of refractoriness for identification of propensity to re-entrant ventricular tachycardia in a canine model of myocardial infarctionCardiovascular Research, 1991
- Cardiac excitability, the electrophysiologic matrix and electrically induced ventricular arrhythmias: Order and reproducibility in seeming electrophysiologic chaosJournal of the American College of Cardiology, 1991
- Chaotic dynamics in an ionic model of the propagated cardiac action potentialJournal of Theoretical Biology, 1990
- Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies.Journal of Clinical Investigation, 1988
- Relation of monophasic action potential recorded with contact electrode to underlying transmembrane action potential properties in isolated cardiac tissues: a systematic microelectrode validation studyCardiovascular Research, 1988
- Non-linear dynamics of cardiac excitation and impulse propagationNature, 1987
- Cellular electrophysiologic characteristics of surviving subendocardial fibers in chronically infarcted right ventricular myocardium susceptible to inducible sustained ventricular tachycardiaAmerican Heart Journal, 1987
- Spontaneous ventricular tachycardia associated with isolated right ventricular infarction, one day after right coronary artery occlusion in the dog: Studies on the site of origin and mechanismAmerican Heart Journal, 1985
- Antiarrhythmic Agents: The Modulated Receptor Mechanism of Action of Sodium and Calcium Channel-Blocking DrugsAnnual Review of Pharmacology and Toxicology, 1984
- Electrophysiology and pharmacology of cardiac arrhythmias. II. Relationship of normal and abnormal electrical activity of cardiac fibers to the genesis of arrhythmias B. Re-entry. Section IAmerican Heart Journal, 1974