A Monomeric MnIII−Peroxo Complex Derived Directly from Dioxygen

Abstract
The binding and activation of dioxygen by transition metal complexes is a fundamentally and practically important process in chemistry. Often the initial steps involve formation of peroxometal species that is difficult to observe because of their inherent reactivity. The interaction of dioxygen with a manganese(II) complex (1) of bis[(N′-tert-butylurealy)-N-ethyl]-(6-pivalamido-2-pyridylmethyl)amine was investigated, leading to the detection of a new intermediate that is a peroxomanganese(III) complex (2). This complex is high-spin (S = 2) with a g value of 8.2 and D = −2.0(5) as determined by parallel-mode electron paramagnetic resonance spectroscopy. The coordination of a peroxo ligand was established using Fourier transform infrared spectroscopy that reveals a new signal at 885 cm−1 for 2 when formed from 16O2—this band shifts to 837 cm−1 when 18O2 is used in the preparation. Moreover, electrospray ionization mass spectra contain a strong ion at an m/z of 576.2703 for the 16O-isotopomer that shifts to 580.2794 in the 18O-isotopomer. Complex 2 also is capable of oxidatively deformylating aldehydes, which is a known reaction of peroxometal complexes. The similarities of 2 to the peroxo intermediates in cytochrome P450 are noted.

This publication has 26 references indexed in Scilit: