Electrotonic Processing of Information by Brain Cells

Abstract
In contrast to well-studied through-protection neurons that propagate information from one region to another in the central nervous system, short-axon or axonless neurons form local circuits, transmitting signals through synapses and electrical junctions between their dendrites. Interaction in this dendritic network proceeds without spike action potentials. Interaction is mediated by graded electrotonic changes of potential and is transmitted through high sensitivity (submillivolt threshold) synapses rather than by lower sensitivity (20 to 100-mv threshold) synapses typical of projection neurons. A crucial feature of local circuits is their high degree of interaction both through specialized junctional structures and through the extracellular fields generated by local and more distant brain regions. The anatomical evidence for the nature and distribution of neuronal local circuits in the nervous system is surveyed. Bioelectric mechanisms are discussed in relation to the special properties of local circuits, including dendrodendritic synapses, synaptic sensitivity, electrotonic coupling, and field effects. Intraneuronal and interneuronal transport of various types of substances suggests that the biochemical and the bioelectrical parameters are functionally interwoven. Through such interactions neuronal local circuits, with their distinctive properties, may play an essential role in higher brain function.