Hammersley stochastic annealing: efficiency improvement for combinatorial optimization under uncertainty

Abstract
This paper presents hierarchical improvements to combinatorial stochastic annealing algorithms using a new and efficient sampling technique. The Hammersley Sequence Sampling (HSS) technique is used for updating discrete combinations, reducing the Markov chain length, determining the number of samples automatically, and embedding better confidence intervals of the samples. The improved algorithm, Hammersley stochastic annealing, can significantly improve computational efficiency over traditional stochastic programming methods. This new method can be a useful tool for large-scale combinatorial stochastic programming problems. A real-world case study involving solvent selection under uncertainty illustrates the usefulness of this new algorithm.

This publication has 16 references indexed in Scilit: