Glial and neuronal expression of polyglutamine proteins induce behavioral changes and aggregate formation in Drosophila
- 27 July 2004
- Vol. 49 (1), 59-72
- https://doi.org/10.1002/glia.20098
Abstract
Patients with polyglutamine expansion diseases, like Huntington's disease or several spinocerebellar ataxias, first present with neurological symptoms that can occur in the absence of neurodegeneration. Behavioral symptoms thus appear to be caused by neuronal dysfunction, rather than cell death. Pathogenesis in polyglutamine expansion diseases is largely viewed as a cell‐autonomous process in neurons. It is likely, however, that this process is influenced by changes in glial physiology and, at least in the case of DRPLA glial inclusions and glial cell death, seems to be an important part in the pathogenesis. To investigate these aspects in a Drosophila model system, we expressed polyglutamine proteins in the adult nervous system. Glial‐specific expression of a polyglutamine (Q)‐expanded (n = 78) and also a nonexpanded (n = 27) truncated version of human ataxin‐3 led to the formation of protein aggregates and glial cell death. Behavioral changes were observed prior to cell death. This reveals that glia is susceptible to the toxic action of polyglutamine proteins. Neuronal expression of the same constructs resulted in behavioral changes similar to those resulting from glial expression but did not cause neurodegeneration. Behavioral deficits were selective and affected two analyzed fly behaviors differently. Both glial and neuronal aggregates of Q78 and Q27 appeared early in pathogenesis and, at the electron microscopic resolution, had a fibrillary substructure. This shows that a nonexpanded stretch can cause similar histological and behavioral symptoms as the expanded stretch, however, with a significant delay.Keywords
Funding Information
- Deutsche Forschungsgemeinschaft (Sonderforschungsbereich) (SFB-581-TP-B8)
This publication has 96 references indexed in Scilit:
- Proteases Acting on Mutant Huntingtin Generate Cleaved Products that Differentially Build Up Cytoplasmic and Nuclear InclusionsMolecular Cell, 2002
- The Role of Protein Composition in Specifying Nuclear Inclusion Formation in Polyglutamine DiseaseJournal of Biological Chemistry, 2001
- Impaired Glutamate Uptake in the R6 Huntington's Disease Transgenic MiceNeurobiology of Disease, 2001
- Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicityJournal of Molecular Biology, 2001
- Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: Implications for Huntington’s disease pathologyProceedings of the National Academy of Sciences, 1999
- Genetic Classification of Primary Neurodegenerative DiseaseScience, 1998
- Cellular Delivery of CNTF but not NT-4/5 Prevents Degeneration of Striatal Neurons in a Rodent Model of Huntington's DiseaseCell Transplantation, 1998
- Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in BrainScience, 1997
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970