Quantitative analysis of glycogen repletion by nuclear magnetic resonance spectroscopy in the conscious rat.
Open Access
- 1 August 1987
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 80 (2), 387-393
- https://doi.org/10.1172/jci113084
Abstract
In order to directly determine the amount of label exchange that occurs in the tricarboxylic cycle from labeled alanine and lactate after the ingestion of a glucose load [1-13C]glucose was administered by continuous intraduodenal infusion to awake catheterized rats to achieve steady state jugular venous glycemia (160 mg/dl) for 180 min. Liver was freeze-clamped at 90 and 180 min, and perchloric acid extracts of the liver were subjected to 13C and 1H nuclear magnetic resonance analysis. Dilution in the oxaloacetate pool was determined by comparing the intrahepatic 13C enrichments of C2, C3 positions of glutamate with the C2, C3 positions of alanine and lactate. In addition steady state flux equations were derived for calculation of relative fluxes through pyruvate dehydrogenase/TCA cycle flux and pyruvate kinase flux/total pyruvate utilization. After glucose ingestion in a 24-h fasted rat direct conversion of glucose was responsible for 34% of glycogen. The intrahepatic dilution factor for labeled pyruvate in the oxaloacetate pool was 2.4. Using this factor, alanine and lactate contributed approximately 55% to glycogen formation. Pyruvate dehydrogenase flux ranged between 24 and 35% of total acetyl-coenzyme A (CoA) production and pyruvate kinase flux relative to total pyruvate utilization was approximately 40%.This publication has 27 references indexed in Scilit:
- Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats.Journal of Clinical Investigation, 1987
- Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy.Journal of Clinical Investigation, 1985
- Quantitative estimation of the pathways followed in the conversion to glycogen of glucose administered to the fasted rat.Journal of Biological Chemistry, 1985
- Determination of gluconeogenesis in vivo with 14C-labeled substratesAmerican Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1985
- The glucose paradox. Is glucose a substrate for liver metabolism?Journal of Clinical Investigation, 1984
- Direct observation of glycogenesis and glucagon-stimulated glycogenolysis in the rat liver in vivo by high-field carbon-13 surface coil NMR.Journal of Biological Chemistry, 1984
- Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo.Proceedings of the National Academy of Sciences, 1984
- Correction for metabolic exchange in the calculation of the rate of gluconeogenesis in ratsBiochemical Medicine, 1983
- Effects of insulin on liver glycogen synthesis and breakdown in the dogAmerican Journal of Physiology-Legacy Content, 1965
- CHROMATOGRAPHY OF AMINO ACIDS ON SULFONATED POLYSTYRENE RESINSJournal of Biological Chemistry, 1951