“Click” Grafting of High Loading of Polymers and Monosaccharides on Surface of Ordered Mesoporous Silica
- 30 October 2009
- journal article
- research article
- Published by American Chemical Society (ACS) in Langmuir
- Vol. 26 (4), 2688-2693
- https://doi.org/10.1021/la9026943
Abstract
The azide−alkyne cycloaddition “click” reaction was used to covalently bond high loadings of polymers and monosaccharides to the surface of an ordered mesoporous silica. The functionalization process was followed using thermogravimetry, gas adsorption, small-angle X-ray scattering, and infrared spectroscopy. Large-pore SBA-15 silica with cylindrical mesopores of diameter ∼15 nm was synthesized using triisopropylbenzene as a micelle expander. The surface of the silica was modified with aminopropyl groups that were converted to propargyl-bearing groups through a reaction with 4-pentynoyl chloride. Thus prepared “clickable” pores were reacted with azide-functionalized poly(methyl methacrylate) (PMMA) and oligo(ethylene glycol) as well as protected and deprotected d-galactose. The new “grafting to” procedure allowed us to introduce uniform polymer films of thickness up to about 2 nm without any appreciable pore blocking, even for the polymer loading as high as 25 wt %. Uniform layers of monosaccharides with loadings up to 20 wt % were also obtained with remarkable grafting efficiency. No change in the periodic structure of the silica support was observed throughout the grafting process. These results demonstrate that the “click” reaction is a powerful approach to ordered mesoporous silicas with accessible pores functionalized with high loadings of various macromolecules and biomolecules.Keywords
This publication has 96 references indexed in Scilit:
- Cu-Catalyzed Azide−Alkyne CycloadditionChemical Reviews, 2008
- ‘Click’ Chemistry in Polymer and Material Science: An UpdateMacromolecular Rapid Communications, 2008
- Construction of Linear Polymers, Dendrimers, Networks, and Other Polymeric Architectures by Copper‐Catalyzed Azide‐Alkyne Cycloaddition “Click” ChemistryMacromolecular Rapid Communications, 2008
- 1,3‐Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials ScienceAngewandte Chemie International Edition, 2007
- ‘Click’ Chemistry in Polymer and Materials ScienceMacromolecular Rapid Communications, 2007
- Synthesis of Star Polymers by a Combination of ATRP and the “Click” Coupling MethodMacromolecules, 2006
- Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click ChemistryJournal of the American Chemical Society, 2005
- Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymersChemical Communications, 2004
- Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to AzidesThe Journal of Organic Chemistry, 2002
- Click Chemistry: Diverse Chemical Function from a Few Good ReactionsAngewandte Chemie International Edition, 2001