Heat loss and blood flow during hyperthermia in normal canine brain I: Empirical study and analysis

Abstract
The effects of blood flow and thermal conduction during microwave hyperthermia were investigated in normal canine brain. Heating was accomplished with an external microstrip spiral antenna and temperature measurements were made using a multichannel fluoroptic thermometry system. In order to determine cooling rates, temperature measurements made during cooling were fitted with a model consisting of a constant value and an exponential term. Data from experiments in both perfused and non-perfused brains could be fitted with this simple model. The resulting cooling rates indicated that heat loss by conduction is comparable to that by blood flow. In another series of experiments, temperature measurements were made during several 1 min cooling intervals in which the power was shut off intermittently during a 35 min heating episode. Results were consistent with a 2–3-fold increase in blood flow rate which occurred gradually throughout the course of heating. Parameters that affect the determination of cooling rates are discussed in terms of the bioheat transfer equation. These investigations demonstrate that a simple heat sink model provides a good representation of the cooling data for the thermal distributions obtained.