Abstract
Two adult chimpanzees were trained on a relative “numerosity” discrimination task. In each trial, two arrays containing different numbers of red dots were presented on a CRT monitor. The subjects were required to choose the array containing the larger number of dots. In Experiment 1, using numerosities between 1 and 8, 28 different pairs were presented repeatedly, and accuracy scores were analyzed to explore which cues the chimpanzee subjects utilized to perform the task. Multiple regression analyses revealed that the subjects’ performance was (1) not simply controlled by the “numerical” difference between arrays, but that it was (2) best described by Fechner’s Law–that is accuracy increased linearly with the logarithmic value of the numerical difference between arrays divided by the number in the larger of the two arrays. This relationship was maintained when using much larger numerosities (Experiment 3). In Experiment 2, the chimpanzees were tested on the effects of total area and density by manipulating dot size and presentation area. The results revealed that these factors clearly affected the subjects’ performance but that they could not alone explain the results, suggesting that the chimpanzees did use relative numerosity difference as a discriminative cue.