Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs.

Abstract
The relationship between left ventricular end-systolic pressure and volume has been proposed as a model of left ventricular contraction which may be useful for quantifying inotropic state independent of preload and afterload. Although the model has been well-validated in isolated hearts, systematic evaluation in conscious animals with an intact peripheral circulation has been limited. Accordingly, we derived end-systolic pressure-volume relationships in twelve conscious dogs, chronically instrumented to measure left ventricular pressure and dimensions from endocardial ultrasonic crystals in three orthogonal axes. We examined the linearity of the end-systolic pressure-volume relationship, its response to alterations of inotropic state and the peripheral circulation, and the influence of beta-adrenergic reflexes. End-systolic pressure-volume relationships were constructed by linear regression of end-systolic pressure-volume coordinates produced by transient inferior vena caval occlusions during atrial pacing. The relations were highly linear; of 127 inferior vena caval occlusions, the correlation coefficient was 0.96 +/- 0.05 (mean +/- SD). The slope of the end-systolic pressure-volume relationship was not significantly altered either by a moderate resistive afterload induced by angiotensin II infusion, or by a moderate increase in preload produced by dextran, but was increased from 4.7 +/- 2.3 to 6.5 +/- 2.2 mm Hg/ml (P less than 0.05) in response to the positive inotropic stimulus of dobutamine. The volume intercept at zero end-systolic pressure was unaffected by dextran or dobutamine, but was decreased from 12 +/- 8 to 5 +/- 11 ml (P less than 0.01) by angiotensin II infusion, indicating a leftward shift of the end-systolic pressure-volume relationship.(ABSTRACT TRUNCATED AT 250 WORDS)