Role of a low-pH environment in adenovirus enhancement of the toxicity of a Pseudomonas exotoxin-epidermal growth factor conjugate

Abstract
A conjugate of Pseudomonas exotoxin and epidermal growth factor (PE-EGF) inhibits proteins synthesis in KB cells, and this inhibition is increased by adenovirus. Protein synthesis inhibition is dependent on the amount of adenovirus and PE-EGF used and the time of incubation of cells with these agents. With 1 microgram of adenovirus and 0.5 micrograms of PE-EGF per ml, protein synthesis is inhibited about 80% in a 60-min experiment. Under these conditions neither adenovirus nor PE-EGF alone has any effect. In the presence of several weak bases or monensin, the enhancement of toxicity was substantially inhibited; half-maximal inhibition was achieved with 40 microM chloroquine, 10 mM ammonium chloride, 5 mM methylamine, 0.1 mM N-hexylamine and 1 microM monensin. At the concentrations employed, none of the inhibitors affected the amount of virus taken up or bound to the cell surface, and chloroquine had no effect on the amount of EGF taken up in 60 min. Chloroquine did not prevent the toxicity of the PE-EGF (5 micrograms/ml) alone. Because these compounds are known to elevate the pH in receptosomes, it seems likely that the acidification of the receptosome either enhances the lysis of the membrane by adenovirus or enhances some other step in the release of PE-EGF.