Polarization of naive T cells into Th1 or Th2 by distinct cytokine-driven murine dendritic cell populations: implications for immunotherapy

Abstract
Dendritic cells (DCs) activate T cells and regulate their differentiation into T helper cell type 1 (Th1) and/or Th2 cells. To identify DCs with differing abilities to direct Th1/Th2 cell differentiation, we cultured mouse bone marrow progenitors in granulocyte macrophage-colony stimulating factor (GM), GM + interleukin (IL)-4, or GM + IL-15 and generated three distinct DC populations. The GM + IL-4 DCs expressed high levels of CD80/CD86 and major histocompatibility complex (MHC) class II and produced low levels of IL-12p70. GM and GM + IL-15 DCs expressed low levels of CD80/CD86 and MHC class II. The GM + IL-15 DCs produced high levels of IL-12p70 and interferon (IFN)-γ, whereas GM DCs produced only high levels of IL-12p70. Naive T cells stimulated with GM + IL-4 DCs secreted high levels of IL-4 and IL-5 in addition to IFN-γ. In contrast, the GM + IL-15 DCs induced higher IFN-γ production by T cells with little or no Th2 cytokines. GM DCs did not induce T cell polarization, despite producing large amounts of IL-12p70 following activation. A similar pattern of T cell activation was observed after in vivo administration of DCs. These data suggest that IL-12p70 production alone, although necessary for Th1 differentiation, is not sufficient to induce Th1 responses. These studies have implications for the use of DC-based vaccines in immunotherapy of cancer and other clinical conditions.
Funding Information
  • National Institute of Health (#CA73743)