The relationship between stimulation-induced potassium release and amylase secretion in the mouse parotid

Abstract
The output of amylase from superfused mouse parotid segments in response to stimulation with acetylcholine (ACh), phenylephrine and isoprenaline during exposure to solutions with varying potassium concentrations was monitored by an on line automated fluorometric method. During stimulation with ACh or phenylephrine a 10-fold increase in superfusion fluid potassium concentration caused an immediate very marked reduction in amylase output which was fully reversible. A 10-fold reduction in potassium concentration resulted in a prominent rise in amylase output. During stimulation with isoprenaline there was no effect on the amylase output of varying the extracellular potassium concentration. Acetylcholine and phenylephrine caused potassium release from the mouse parotid whereas isoprenaline had no such effect. It appears that under conditions where stimulation-induced potassium release is enhanced there is also an enhanced amylase secretion and vice versa. There may therefore be a link between passive potassium transport and amylase secretion.