Abstract
The preprophase band (PPB) of microtubules (MTs), which appears at the future site of cytokinesis prior to cell division in higher plant cells, disappears by metaphase. Recent studies have shown that displacement of the endoplasm from the PPB region by centrifugation delays the disappearance of the PPB. To study the role of the endoplasm in the cell cycle-specific disruption of the PPB, the filamentous protonemal cells of the fern Adiantum capilius-veneris L. were centrifuged twice so that the first centrifugation displaced the endoplasm from the site of the PPB and the second returned it to its original location. The endoplasm, including the nucleus of various stages of mitosis, could be returned by the second centrifugation to the original region of the PPB, which persists during mitosis in the centrifuged cells. When endoplasm with a prophase nucleus was returned to its original location, the PPB was not disrupted. When endoplasm with a prometa-phase telophase nucleus was similarly returned, the PPB was disrupted within 10 min of termination of centrifugation. In protonemal cells of Adiantum, a second PPB is often formed near the displaced nucleus after the first centrifugation. In cells in which the endoplasm was considered to have been returned to its original location at the prophase/prometaphase transition, the second PPB did not disappear even though the initial PPB was disrupted by the endoplasm. These results suggest that cell cycle-specific disruption of the PPB is regulated by some factor(s) in the endoplasm, which appears at prometaphase, i.e. the stage at which the PPB is disrupted in non-centrifuged cells.