The problem treated is that of a plate of unlimited extent containing a circular insert and subjected to a concentrated radial force in the plane of the plate. The elastic properties of the insert are different from those of the plate, and a perfect bond is assumed between the two materials. The solution is exact within the classical theory of elasticity, and is in a closed form in terms of elementary functions. Explicit formulas are given for the components of stress in Cartesian co-ordinates, and also in polar co-ordinates at the circumference of the insert.