Theory and simulations of homonuclear spin pair systems in rotating solids

Abstract
The theory of nuclear magnetic resonance (NMR) on a solid sample containing pairs of coupled homonuclear spins‐1/2, rotating in a large magnetic field, is presented. The time dependence introduced by the sample rotation, in conjunction with the spin–spin coupling, makes it appear that each of the central two levels in the four‐level system split into a pair of ‘‘virtual states.’’ Each of the eight possible single‐quantum coherences between the virtual states and the two outer levels in general contribute to the spectrum, although four of these contributions are forbidden unless a rotational resonance occurs (matching of an integer multiple of the spinning speed with the difference in isotropic shifts). Analytical line shapes for the case of vanishing shift anisotropy are given and techniques for numerical simulation in the general case demonstrated. The theory of Zeeman magnetization exchange in the presence of zero‐quantum dephasing is presented.