Lack of Relationship between Purine Biosynthesis and Vancomycin Resistance in Staphylococcus aureus : a Cautionary Tale for Microarray Interpretation

Abstract
Previous microarray data (E. Mongodin, J. Finan, M. W. Climo, A. Rosato, S. Gill, and G. L. Archer, J. Bacteriol. 185:4638-4643, 2003) noted an association in two vancomycin-intermediate Staphylococcus aureus (VISA) strains between high-level, passage-induced vancomycin resistance, a marked increase in the transcription of purine biosynthetic genes, and mutation of the putative purine regulator purR . Initial studies to report on the possible association between vancomycin resistance and alterations in purine metabolism in one of these strains (VP-32) confirmed, by Western analysis, an increase in the translation of PurH and PurM, two purine pathway enzymes. In addition, PurR was identified, by knockout and complementation in a vancomycin-susceptible strain, as a repressor of the purine biosynthetic operon in S. aureus , and the PurR missense mutation was shown to inactivate the repressor. However, despite the apparent relationship between increased purine biosynthesis and increased vancomycin resistance in VP-32, neither the addition of exogenous purines to a defined growth medium nor the truncation or inactivation of purR improved the growth of vancomycin-susceptible S. aureus in the presence of vancomycin. Furthermore, the passage of additional vancomycin-susceptible and VISA strains to high-level vancomycin resistance occurred without changes in cellular purine metabolism or mutation of purR despite the development of thickened cell walls in passaged strains. Thus, we could confirm neither a role for altered purine metabolism in the development of vancomycin resistance nor its requirement for the maintenance of a thickened cell wall. The failure of biochemical and physiological studies to support the association between transcription and phenotype initially found in careful microarray studies emphasizes the importance of follow-up investigations to confirm microarray observations.

This publication has 32 references indexed in Scilit: