Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method

Abstract
A calcein fluorescence quenching method was applied to measure osmotic water permeability in highly differentiated primary cultures of brain astrocytes from wild-type and aquaporin-4 (AQP-4)-deficient mice. Cells grown on coverglasses were loaded with calcein for measurement of volume changes after osmotic challenge. Hypotonic shock producing twofold cell swelling resulted in a reversible ∼12% increase in calcein fluorescence, which was independent of cytosolic calcein concentration at levels well below where calcein self-quenching occurs. Calcein fluorescence was quenched in f) of ∼0.05 cm/s. Pf was reduced 7.1-fold in astrocytes from AQP-4-deficient mice. Temperature dependence studies indicated an increased Arrhenius activation energy for water transport in AQP-4-deficient astrocytes (11.3 ± 0.5 vs. 5.5 ± 0.4 kcal/mol). Our studies establish a calcein quenching method for measurement of cell membrane water permeability and indicate that AQP-4 provides the principal route for water transport in astrocytes.

This publication has 41 references indexed in Scilit: