Abstract
The various origins of a frequency-dependent conductivity in amorphous semiconductors are reviewed, stressing particularly recent advances and the influences that factors such as correlation and non-random spatial distributions of electrically active centres can have on the a.c. conductivity. A comprehensive survey is given of the experimental a.c. data for two types of amorphous semiconductor, namely chalcogenide and pnictide materials. It is concluded that the a.c. behaviour at intermediate to high temperatures is well accounted for by the correlated-barrier-hopping model, whereas the low-temperature behaviour is probably due to atomic tunnelling.