Specific projections of retina transplanted to rat brain

Abstract
Retinae were taken from fetal rats and transplanted adjacent to the superior colliculus of neonatal rats. After 1 month survival, the transplants were surgically removed from the hosts, locally damaged or injected with horseradish peroxidase (HRP) to determine the distribution of the transplant efferents in the host brains. Histological examination of the transplants revealed cell and plexiform layers characteristic of normal retinae. Since the retinae were undifferentiated at the time of transplantation, this layering developed within the host. The only obvious differences from normal retina were that the layers were organized in rosettes or folded sheets and lacked well developed photoreceptor outer segments. In animals which had lesions or HRP injections confined to the retinal transplant, proper staining of sections of the host brain revealed transplant projections. These projections were confined to the optic tract and nuclei which are normally retinorecipient such as the superior colliculus and dorsal lateral geniculate nucleus. Projections were found along the border of non-retinorecipient nuclei such as the lateral posterior nucleus, but did not appear to enter these nuclei. It was observed that within the superior colliculus the host retinal input had an effect on the distribution of the transplant projection. In one-eyed hosts the transplant projection was distributed throughout the stratum (s.) zonale, s. griseum superficiale, and s. opticum; whereas in the two-eyed hosts, the transplant projection was confined to the s. zonale and the border between s. griseum superficiale and s. opticum. We suggest that a special affinity exists between the axons of the retinal transplants and host visual structures. Furthermore, factors, such as competition and timing may be important in determining the distribution of the transplant axons within the specific target nuclei. Transplantation appears to be a useful technique for further studies on the mechanisms underlying the development of specific neuronal connections.