Abstract
A mathematical analysis of failure developments for tubular hydroforming under combined internal pressure and end feeding is presented in this paper. Under considerations are two distinct failure modes, namely the bursting and the wrinkling. Bursting is an instability phenomenon where the tube can’t sustain any more tensile loading. Splitting usually follows due to extreme deformations in the bursting area. Wrinkling is due to high compression load, which deteriates the qulity of the final product. The deformation theory of plasticity is utilized in this study that takes into account of material anisotropy. The governing equations for the onset of both failure modes are established. The results are presented as Hydroforming Failure Diagram in the End Feed – Internal Pressure space. A parametric study of the failure criteria for a variety of materials and process parameters is performed. It is shown that the material anisotropy plays a significant role. The results provide guidelines for product designers and process engineers for the avoidance of failure during hydroforming. The validity and applicability of current study are also discussed.