Determination of Structure and Composition of Suberin from the Roots of Carrot, Parsnip, Rutabaga, Turnip, Red Beet, and Sweet Potato by Combined Gas-Liquid Chromatography and Mass Spectrometry

Abstract
Suberin from the roots of carrots (Daucus carota), parsnip (Pastinaca sativa), rutabaga (Brassica napobrassica), turnip (Brassica rapa), red beet (Beta vulgaris), and sweet potato (Ipomoea batatas) was isolated by a combination of chemical and enzymatic techniques. Finely powdered suberin was depolymerized with 14% BF3 in methanol, and soluble monomers (20-50% of suberin) were fractionated into phenolic (C20) were the dominant components in all six plants. In the alcohol fraction C18, C20, C22, and C24 saturated primary alcohols were the major components. C16 and C18 dicarboxylic acids were the major dicarboxylic acids of the suberin of all six plants and in all cases octadec-9-ene-1, 18-dioic acid was the major component except in rutabaga where hexadecane-1, 16-dioic acid was the major dicarboxylic acid. The composition of the ω-hydroxyacid fraction was quite similar to that of the dicarboxylic acids; 18-hydroxy-octadec-9-enoic acid was the major component in all plants except rutabaga, where equal quantities of 16-hydroxyhexadecanoic acid and 18-hydroxyoctadec-9-enoic acid (42% each) were found. Compounds which would be derived from 18-hydroxyoctadec-9-enoic acid and octadec-9-ene-1, 18-dioic acid by epoxidation, and epoxidation followed by hydration of the epoxide, were also detected in most of the suberin samples. The monomer composition of the six plants showed general similarities but quite clear taxonomic differences.