Abstract
We present a review of recent results concerning the physics of ultracold trapped dipolar gases. In particular, we discuss the Bose-Einstein condensation for dipolar Bose gases and the BCS transition for dipolar Fermi gases. In both cases we stress the dominant role of the trap geometry in determining the properties of the system. We present also results concerning bosonic dipolar gases in optical lattices and the possibility of obtaining variety of different quantum phases in such case. Finally, we analyze various possible routes towards achieving ultracold dipolar gases.Comment: This paper is based on the lecture given by M. Lewenstein at the Nobel Symposium ''Coherence and Condensation in Quantum Systems'', Gothesburg, 4-7.12.200
All Related Versions