Rate of advancement of reactions in turbulent flows

Abstract
When a reacting substance or mixture is caused to flow in a cylindrical reactor, all portions of the stream will not flow at the same rate and will exhibit different residence times and, accordingly, are subject to different extents of degrees of reaction. The average degrees of reaction following the residence time distribution proper to laminar flow are given in the earlier publication1 and this paper extends the treatment to that of turbulent flow. In the earlier treatment of laminar flow the ratio of average extent of reaction with non-interacting streams to that of complete intermingling, or the C/Cm, is plotted against the ratio of the times of flow with those of reaction (S). The C/Cm versus S curves are all above unity and increase with increasing S, with the exception of very high orders of chemical reaction for which values of C/Cm are all unity. In the case of turbulent flow the values of C/Cm are more nearly unity at all values of S.