Base pairing structure in the poly d(G-T) double helix: wobble base pairs

Abstract
High resolution nuclear magnetic resonance (NMR) and ethidium bromide binding studies are used to demonstrate that poly d(G-T) forms an ordered double helical structure at low temperatures (below 24 degrees C in 0.3 M NaCl) in which G and T are hydrogen bonded together in a wobble base pair hydrogen bonding scheme as proposed earlier by Lezius and Domin. Alternative hydrogen bonding schemes involving the tautomeric form of either T or G, such as have been proposed to account for mutation rates in DNA synthesis, are eliminated.