Abstract
The time evolution of the isotopic composition of seawater strontium (the ratio of strontium-87 to strontium-86) over the last 500 million years has the form of an asymmetric trough. The values are highest in the Cambrian and Recent (0.7091) and lowest in the Jurassic (0.7067). Superimposed on this trend are a number of smaller oscillations. Consideration of the geochemical cycle of strontium and the dynamics of weathering shows that only Himalayan-style continental collisions can influence the isotope ratio on the scale observed. The contemporary Himalayan orogeny is by far the largest since the late Precambrian Pan-African event that produced the high in the Cambrian.