Effects of aging on myelinated nerve fibers in monkey primary visual cortex

Abstract
In monkeys, myelin sheaths of the axons in the vertical bundles of nerve fibers passing through the deeper layers of primary visual cortex show age-related alterations in their structure. These alterations have been examined by comparing the myelin sheaths in young monkeys, 5–10 years old, with those in old monkeys, between 25 and 33 years of age. The age-related alterations are of four basic types. In some sheaths, there is local splitting of the major dense line to accommodate dense cytoplasm derived from the oligodendrocytes. Other sheaths balloon out, and in these locations, the intraperiod line in that part of the sheath opens up to surround a fluid-filled space. Other alterations are the formation of redundant myelin so that a sheath is too large for the enclosed axon and the formation of double sheaths in which one layer of compact myelin is surrounded by another one. These alterations in myelin increase in frequency with the ages of the monkeys, and there is a significant correlation between the breakdown of the myelin and the impairments in cognition exhibited by individual monkeys. This correlation also holds even when the old monkeys, 25 to 33 years of age, are considered as a group. It is suggested that the correlation between the breakdown of myelin in the old monkeys and their impairments in cognition has not to do specifically with visual function but to the role of myelin in axonal conduction throughout the brain. The breakdown of myelin could impair cognition by leading to a change in the conduction rates along axons, resulting in a loss of synchrony in cortical neuronal circuits. J. Comp. Neurol. 419:364–376, 2000.