Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice

Abstract
Cerebral amyloid angiopathy (CAA), characterized by extracellular β-amyloid peptide (Aβ) deposits in vessel walls, is present in the majority of cases of Alzheimer’s disease and is a major cause of hemorrhagic stroke. Although the molecular pathways activated by vascular Aβ are poorly understood, extracellular matrix metalloproteinases (MMP) and Aβ-induced oxidative stress appear to play important roles. We adapted fluorogenic assays for MMP activity and reactive oxygen species generation for use in vivo. Using multiphoton microcopy in APPswe/PS1dE9 and Tg-2576 transgenic mice, we observed strong associations between MMP activation, oxidative stress, and CAA deposition in leptomeningeal vessels. Antioxidant treatment with α-phenyl-N-tert-butyl-nitrone reduced oxidative stress associated with CAA (∼50% reduction) without affecting MMP activation. Conversely, a selection of agents that inhibit MMP by different mechanisms of action, including minocycline, simvastatin, and GM6001, reduced not only CAA-associated MMP activation (∼30–40% reduction) but also oxidative stress (∼40% reduction). The inhibitors of MMP did not have direct antioxidant effects. Treatment of animals with α-phenyl-N-tert-butyl-nitrone or minocycline did not have a significant effect on CAA progression rates. These data suggest a close association between Aβ-related MMP activation and oxidative stress in vivo and raise the possibility that treatment with MMP inhibitors may have beneficial effects by indirectly reducing the oxidative stress associated with CAA.