Strength‐Duration Curves of Fixed Pulse Width Variable Tilt Truncated Exponential Waveforms for Nonthoracomy Internal Defibrillation in Dogs

Abstract
Six anesthetized dogs (wgt 19.6 + 1.1 kg) underwent defibrillation trials using truncated monophasic pulses of 2.5-20 msec in duration. The current pathway consisted of a 4 cm2 RV catheter electrode (cathode) and a 13.9 cm2 subcutaneous chest wall patch (anode). Fibrillation was induced by alternating current and defibrillation attempted 10 seconds later. Only one test shock was assessed for each fibrillation episode. The various durations were tested randomly, and the minimum peak voltage and energy resulting in defibrillation was determined for each. Shorter pulse durations were associated with lower energies with pulses of 2.5-15 msec having significantly lower energy thresholds than shocks of 20 msec (P less than 0.05). The relationship between duration and voltage threshold is hyperbolic with minimum voltage between 7.5 and 12.5 msec while the shortest and longest pulses were associated with the highest voltage thresholds. Shocks of 5 to 15 msec were associated with significantly lower voltage threshold than 2.5 msec pulses (P less than 0.05). The threshold average current (Iav) reached a nadir at 10 msec. Shocks in the midrange of those tested resulted in the best combination of low average current and energy requirements for defibrillation using this nonthoracotomy lead system.