Brownian dynamics as smart Monte Carlo simulation

Abstract
A new Monte Carlo simulation procedure is developed which is expected to produce more rapid convergence than the standard Metropolis method. The trial particle moves are chosen in accord with a Brownian dynamics algorithm rather than at random. For two model systems, a string of point masses joined by harmonic springs and a cluster of charged soft spheres, the new procedure is compared to the standard one and shown to manifest a more rapid convergence rate for some important energetic and structural properties.