Leaf-Shaped Element Bowtie Antenna with Flat Reflector for UWB Applications

Abstract
Recently. a lot of UWB antennas have been reported by many research groups. Most of the reported antennas have onmidirectional radiation characteristics. The disadvantage of using orimidirectional antennas is that the antenna performance can be degraded by adjacent walls or metals. If unidirectional UWB antennas are utilized, the degradation on the antenna performance due to omnidirectionality can be avoided. Another important topic in UWB antennas is the waveform distortion caused by antennas' transmission characteristics. In impulse-based UWB communications, waveform distortions of transmitted and received pulses caused by antennas deteriorate the communication performance. Therefore, the development of UWB antennas having small waveform distortions is highly desirable. In this paper, we propose a novel bowtie antenna using leaf-shaped radiating elements and a flat reflector. This antenna has unidirectional radiation patterns over the frequency range of 3.0 to 10.5 GHz. The actual gain in the maximum radiation direction is 6.0-9.0 dBi, in the frequency range of 4.5-9.4 GHz (relative bandwidth of 71%). The cross-correlations between source pulse and received pulse waveforms are 0.89-0.94, and hence the waveform distortion caused by this antenna is relatively small. As a result, the proposed antenna is useful for impulse-based UWB communication systems using correlation detection.

This publication has 4 references indexed in Scilit: