Abstract
The large-eddy energy equilibrium hypothesis states that the largest eddies of a turbulent shear flow are in approximate energy equilibrium throughout a significant part of their lives. This hypothesis leads to a relationship between the mean rate of shear strain and the Reynolds shear stress which involves the scale of the large eddies. By assuming that the large-eddy scale is proportional to the standard deviation of the free turbulent boundary, or laminar superlayer, the validity of this hypothesis may be checked experimentally. Intermittency and mean velocity measurements made in five different two-dimensional shear flows are presented and these results, together with values calculated from Townsend's measurements in a two-dimensional wake, support the form of relationship suggested by the energy equilibrium hypothesis.

This publication has 1 reference indexed in Scilit: