Measurements of concentration fluctuations in relative turbulent diffusion

Abstract
In 1965 Sullivan made many measurements of concentration in dye plumes in the surface layer of Lake Huron with the primary purpose of estimating the distance–neighbour function (Sullivan 1965, 1971). This paper presents the results of a recent analysis of the concentration fluctuations in these experiments for, despite their great practical and theoretical importance, there are very few published reports of such measurements from natural environments. One reason for this apparent neglect has undoubtedly been the anticipated high noise level, and the present results confirm this expectation. The experimental analysis uses the framework of relative diffusion since this has great advantages compared with that of absolute diffusion. Despite the noise, the results are consistent, to the degree of spatial resolution attained, with the self-similar structure anticipated for relative, but not absolute, diffusion. Further interesting features of the results are that changes in the form of the statistical properties across the plume indicate an unexpectedly strong influence of the central regions, and that certain statistical properties have much less noisy profiles than that of the mean square fluctuations. The influence of molecular diffusion is shown to be strong. Interpretation of the results is based partly on the extension of the theory recently developed by Chatwin & Sullivan (1979a) for a cloud, although the limited spatial resolution attained did not allow direct critical examination of this work.