Regulatory and functional compartment of three multifunctional protein kinase systems
- 1 February 1979
- journal article
- review article
- Published by Springer Nature in Molecular and Cellular Biochemistry
- Vol. 23 (3), 153-165
- https://doi.org/10.1007/bf00219454
Abstract
Summary Cyclic AMP-dependent protein kinase has been well established to be composed of catalytic and regulatory subunits, and cyclic AMP acts to dissociate these subunits to exhibit full enzymatic activity. In contrast, cyclic GMP-dependent protein kinase does not possess such a subunit structure and is activated by cyclic GMP simply in an allosteric manner. In addition to cyclic AMP-dependent and cyclic GMP-dependent protein kinases, another species of multifunctional protein kinase has been found in many mammalian tissues. This protein kinase is entirely independent of cyclic nucleotides and activated by lower concentrations of Ca21 in the presence of a membrane-associated factor. This factor has been identified as phospholipids; in fact, phosphatidylinositol and phosphatidylserine are active in this role, whereas lecithin and sphingomyelin are unable to activate the enzyme. Thus, the three species of protein kinases mentioned above are activated in different manners. Nevertheless, these enzymes show very similar substrate specificities and phosphorylate the same specific seryl residues of histone fractions. In addition, all enzymes have abilities to activate and inactivate muscle phosphorylase kinase and glycogen synthetase, respectively, although the relative rates of reactions towards various substrates are markedly different. The Ca2+-dependent protein kinase seems to be associated with membranous components, whereas cyclic GMP-dependent protein kinase appears to be related to certain subcellular organella such as nucleus. Suggestive evidence is available implying that the cyclic AMP-, cyclic GMP- and Ca2+-activated three sets of protein kinase systems may play each specific physiological roles presumably owing to their own subcellular compartments.Keywords
This publication has 103 references indexed in Scilit:
- Subunit structure of cyclic CMP-dependent protein kinase from guinea pig fetal lung: Dissociation of holoenzyme by cyclic GMP and histoneBiochemical and Biophysical Research Communications, 1976
- Phosphorylated sites of calf thymus H2B histone by adenosine 3′:5′-monophosphate-dependent protein kinase from bovine cerebellumBiochemical and Biophysical Research Communications, 1976
- Amino acid sequence at the phosphorylated site of rat liver pyruvate kinaseBiochemical and Biophysical Research Communications, 1975
- Cyclic nucleotide-dependent protein kinases of the rat pancreasBiochemical and Biophysical Research Communications, 1973
- A protein kinase activity from rat cerebellum stimulated by guanosine-3′:5′-monophosphateBiochemical and Biophysical Research Communications, 1972
- Similarity and pleiotropic actions of adenosine 3′,5′-monophosphate-dependent protein kinases from mammalian tissuesBiochemical and Biophysical Research Communications, 1972
- Mode of action of adenosine 3′,5′-cyclic phosphate on protein kinase from rat liverBiochemical and Biophysical Research Communications, 1970
- Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brainBiochemical and Biophysical Research Communications, 1970
- Adenosine 3′,5′-cyclic phosphate-dependent and independent histone kinases from rat liverBiochemical and Biophysical Research Communications, 1970
- Cyclic 3′,5′-nucleotide phosphodiesteraseBiochemical and Biophysical Research Communications, 1970