Metabolism of cationized lipoproteins by human fibroblasts: biochemical and morphologic correlations

Abstract
Human plasma low density lipoprotein (LDL) that was rendered polycationic by coupling with N,N-dimethyl-1,3-propanediamine (DMPA) was shown by EM to bind in clusters to the surface of human fibroblasts. The clusters resembled those formed by polycationic ferritin (DMPA-ferritin), a visual probe that binds to anionic sites on the plasma membrane. Biochemical studies with 125I-labeled DMPA-LDL showed that the membrane-bound lipoprotein was internalized and hydrolyzed in lysosomes. The turnover time for cell-bound 125I-DMPA-LDL, i.e., the time in which the amount of 125I-DMPA-LDL degraded was equal to the steady-state cellular content of the lipoprotein, was about 50 h. Because the DMPA-LDL gained access to fibroblasts by binding nonspecifically to anionic sites on the cell surface rather than by binding to the physiologic LDL receptor, its uptake failed to be regulated under conditions in which the uptake of native LDL was reduced by feedback suppression of the LDL receptor. Unlike the case with native LDL, the DMPA-LDL accumulated progressively within the cell, and this led to a massive increase in the cellular content of both free and esterified cholesterol. Studies with 14C-oleate showed that at least 20% of the accumulated cholesteryl esters represented cholesterol that was esterified within the cell. After 4 days of incubation with 10 .mu.g/ml of DMPA-LDL, fibroblasts had accumulated so much cholesteryl ester that neutral lipid droplets were visible at the light microscope level with Oil Red O staining. By EM these intracellular lipid droplets were observed to lack a tripartite limiting membrane. The ability to cause the overaccumulation of cholesteryl esters within cells by using DMPA-LDL provides a model system for study of the pathologic consequences at the cellular level of massive deposition of cholesteryl ester.