Abstract
We conduct molecular simulations of liquid methane in a system where molecular resolution fluctuates between atomically explicit and spherically symmetric united atoms. An appropriate dual-resolution canonical ensemble is constructed using (a) effective united atom pair potentials and (b) resolution-control potentials that confine explicit and united atoms chiefly to different slabs in the simulation domain. A Monte Carlo simulation is developed to sample this ensemble. We show that compatibility of the united-atom potentials with the explicit potentials in a concurrent simulation can be tuned by adjusting the width of the interface between the two resolution regions and by direct modification of the united-atom pair potentials. Our results lay the groundwork for treatment of larger atomically specific molecules with similar concurrent multiresolution techniques.