The maximal effects of insulin and muscle contractions on glucose transport are additive. GLUT-4 is the major glucose transporter isoform expressed in skeletal muscle. Muscle contraction and insulin each induce translocation of GLUT-4 from intracellular sites into the plasma membrane. The purpose of this study was to test the hypothesis that the incremental effect of contractions and insulin on glucose transport is mediated by additivity of the maximal effects of these stimuli on GLUT-4 translocation into the sarcolemma. Anesthetized rats were given insulin by intravenous infusion to raise plasma insulin to 2,635 +/- 638 microU/ml. The gastrocnemius-plantaris-soleus group was stimulated to contract via the sciatic nerve by using a protocol that maximally activates glucose transport. After treatment with insulin, contractions, or insulin plus contractions or no treatment, the gastrocnemius-plantaris-soleus muscle group was dissected out and was subjected to subcellular fractionation to separate the plasma membrane and intracellular membrane fractions. Insulin induced a 70% increase and contractions induced a 113% increase in the GLUT-4 content of the plasma membrane fraction. The effects of insulin and contractions were additive, as evidenced by a 185% increase in the GLUT-4 content of the sarcolemmal fraction. This finding provides evidence that the incremental effect of maximally effective insulin and contractile stimuli on glucose transport is mediated by additivity of their effects on GLUT-4 translocation into the sarcolemma.