cDNA sequence and deduced amino acid sequence of the precursor of the 37‐kDa inner envelope membrane polypeptide from spinach chloroplasts

Abstract
We present the nucleotide sequence and the deduced amino acid sequence of a cDNA clone that encodes the entire precursor of the 37-kDa inner envelope membrane protein from spinach chloroplasts. The precursor protein consists of 344 amino acids (Mr 38,976). In vitro processing followed by radiosequence analysis of the in vitro transcribed and translated precursor protein revealed that its transit peptide consists of only 21 amino acid residues. The transit peptide has the potential to form an amphiphilic alpha-helix with a strong hydrophobic moment. It is speculated that this structural element represents an ancestral envelope-targeting domain. The in vitro synthesized precursor protein is directed to the chloroplasts and it is inserted into the envelope membrane in an ATP-dependent manner. The mature protein (323 amino acid residues, Mr 36,830) has a moderate hydrophobicity and contains only one membrane-spanning segment which is located at the C-terminus and possibly anchors the protein within the envelope membrane.