Collaterals of spinothalamic cells in the rat

Abstract
Spinothalamic (STT) cells were investigated in the rat to determine the distribution of subpopulations with terminals in both the lateral and medial thalamus, the thalamus bilaterally, or the thalamus and the medullary retic-ular formation. Two or more retrogradely transported substances (fluores-cent dyes, and/or horseradish peroxidase) were injected in each animal. Three combinations of injections were most commonly used: (1) injections of the medullary reticular formation and thalamus, (2) separate injections into each side of the thalamus, and (3) separate injections into the medial and lat-eral thalamus. The distribution of single labeled cells after each injection was compared with previously published results for rats. The distribution of cells which contained both tracers, double-labeled (DL) cells, was the focus of this study. An average of 15% of STT cells and 8% of spinoreticular cells projected to both the reticular formation and thalamus. However, only a small component of STT cells (less than 2%) projected bilaterally into the thalamus. Most DL cells were found in upper cervical segments. The laminar distributions of all three groups of DL neurons were similar. These cells were most often located in the reticulated part of lamina V and the intermediate zone, lamina VII. STT cells that had terminals in both the medial and lateral thalamus and STT cells with collaterals in the reticular formation were con-centrated on the side contralateral to their terminals. These DL neurons pro-vide an anatomical substrate for noxious stimuli to activate the reticular for-mation and thalamus and/or specific sensory and intralaminar thalamus simultaneously.