Abstract
DNA deletion by site-specific chromosome breakage and rejoining occurs extensively during macronuclear development in the ciliate Tetrahymena thermophila. We have sequenced both the micronuclear (germ line) and rearranged macronuclear (somatic) forms of one region from which 1.1 kilobases of micronuclear DNA are reproducibly deleted during macronuclear development. The deletion junctions lie within a pair of 6-base-pair direct repeats. The termini of the deleted sequence are not inverted repeats. The precision of deletion at the nucleotide level was also characterized by hybridization with a synthetic oligonucleotide matching the determined macronuclear (rejoined) junction sequence. This deletion occurs in a remarkably sequence-specific manner. However, a very minor degree of variability in the macronuclear junction sequences was detected and was shown to be inherent in the mechanism of deletion itself. These results suggest that DNA deletion during macronuclear development in T. thermophila may constitute a novel type of DNA recombination and that it can create sequence heterogeneity on the order of a few base pairs at rejoining junctions.